

GENERAL

VE type Fuel Injection Pump Part Numbers

The part number system and name plate attaching position for the ZEXEL VE type fuel injection pump are as given below. They differ from the R. Bosch VE pump.

Always use a part number beginning with 1047 and refer to the microfiche for the calibration data and part list. (Do not use part numbers beginning with 1046).

1. Location of part No.

ZEXEL

A1

			GEN	ERAL
	Dec	en	ber	1985
S.I	.17	3	1985	2/4

2. Coded designation of VE type injection pump

(1) Code No.

(2) Bosch-type designation

A2

- Injection pump general ass'y part No. and injection pump ass'y part No.
 - An example is given on page 4.
 - -1 The five digits used for the injection pump ass'y part No. increase to 12 digits for the injection pump general ass'y part No., to include different additional devices and specifications, etc.
 - -2 Even if the 4th digit of the part number is changed from 6 to 7, it does not give the correct general ass'y number. Except for key numbers 2 and 11, the digits other than the 4th digit are also different.

For example

A4

					_			-			_			_
	REMARKS	For Europe, Datsun Truck	100 T	W-CSD, for cold area, w/m	W-CSD, for cold area,	W-CGD, for cold area,	W-CSD, for cold area,	UBS52, '84	UBS52, '64	UBS52, '84, M/T.	UBS52, 184, M/T.	For EC, TC	For EC, TC	
(1)	OTHERS	M-FICD							•					
VICE	CSD	•		0	0	0	0				•	•	•	
NAL DE	DASH-		•									0	0	
DDITIO	ACTU-	1				•		•		0	0			
A	PICK-		0		•	0	0	•	0		0		0	
	MODEL	SD23	RF	CD17	CD17	CD17	CD17	C223	C223	C223	C223	4D6	4D6	1
ENGINE	MANUFACTURER	NISSAN DIESEL	MAZDA	NISSAN	NISSAN	NISSAN	NISSAN	ISUZU	ISUZU	ISUZU	ISUZU	MITSUBISHI	MITSUBISHI	
INJECTION PUMP	PART NO.	104740-4701 [16700 18G 02]	104748-0173 [RF113800C]	104748-2370 [16700 16A 63]	104748-2380 [15700 16A 68]	104748-2390 [16700 16A 73]	104748-2400 [16700 16A 78]	104749-1500 [894124 8420]	104749-1510 (894124 8430)	104749-1520 (894124 8440)	104749-1530 [894124 8450]	104749-3010 [MD077258]	104749-3020 [MD077259]	
INJECTION PUMP	ASS'Y PART NO.	104640-4681	104648-0173	104648-2180	104648-2180	104648-2180	104648-2180	104649-1360	104649-1360	104649-1360	104649-1360	104649-3010	104649-3010	
No.		-	2	m	4	5	9	7	8	9	9	11	2	101

(1) The injection pump general ass'y may include some of these additional devices.

The abbreviations are as follows. ŧ 011010

FICKUP:	Tachometer Pick up	ACTUATOR:	For F.I.C.D.
DASHPOT:	To prevent vehicle vibration when decelerating	CSD:	Cold Start Device
M-FICD:	Manual Fast Idle Control Device	W-CSD:	Wax Tvpe Cold Start Device
: 1./W	Manual transmission	A /T.	Automatic transmission
TC:	Turbo charger		

GENERAL December 1985 S.I.173 1985 4/4

Service Information =

GENERAL

VE TYPE INJECTION PUMP SERVO VALVE TIMER

A servo valve timer is now used with several of the VE type injection pumps. The following is an explanation of the servo valve timer's construction and operation.

1. Purpose

It is well-known that the relationship between fuel injection timing and engine performance (power, exhaust gas, engine vibration) is very important.

If actual fuel injection timing differs only slightly from the standard specified timing then diesel engine performance will be adversely effected. With a conventional timer mechanism this results in fluctuations in the injection pump's driving reaction force.

A Comparison of Conventional and Servo Valve Timer Construction
 Conventional Type Timer

ZEXEL

In the conventional type timer the timer piston's orifice enables pump chamber fuel oil pressure (high fuel oil pressure Fp) to act directly on the timer's high pressure chamber. Devisure the timer's low pressure chamber is connected to the fuel inlet, and low pressure acts on the timer's low pressure chamber. The timer's low pressure chamber contains a timer spring, and the timer spring's force (Fs) pushes the timer piston in the retard

S.I. 155.

Fig. 1

direction. The timer characteristics are decided by the balance of these two opposing forces (Fp, Fs).

As shown in Fig. 1, with this type of timer, the driving reaction force directly effects timer piston movement (fuel injection timing). Fluctuations in the driving reaction force are transferred directly to the timer piston connected to the roller holder and pin, resulting in timer piston movement.

The effect of the driving reaction force can be shown by the formula

$$\Delta Xp = \frac{\Delta Pt \times Sp - Fdr}{K}, \text{ where}$$

∆Xp: Timer piston displacement (mm)
 △Pt: Pump chamber pressure fluctuation
 (kg/cm²)
 Sp: Timer piston's effective pressure
 area (cm²)
 Fdr: Driving reaction force (kg)
 K : Timer spring constant (kg/mm)

Accordingly, as Sp and K are constant, when Pt is stabilized fluctuations in Fdr directly affect Δ Xp (fuel injection timing).

2-2 Servo Valve Timer

٠

With the servo valve timer, pump chamber pressure (Fp) does not act directly on the timer's high pressure chamber, but flows through the servo valve before acting on the timer's high. pressure chamber. The timer spring force (Fs) does not push the timer piston, but pushes the servo valve against The pump chamber pressure. servo valve position depends on the balance of these two opposing forces (Fp, Fs), and timer characteristics in turn depend on the servo valve position.

		GEN	ERAL
-		JUNE .	1985
S.I.	155.	1985	3/9

For example, if the timer piston is moved in the retard direction by fluctuations of the driving reaction force, the servo valve position will not change. The servo valve then functions to compensate for the fluctuations in the driving reaction force by allowing the supply of pump chamber pressure to the timer piston. The timer piston is therefore returned to its original position. In other words, the timer piston position is dependent on servo valve position. Actual servo valve movement (ΔXv) is calculated using the rollowing formula:

$$\Delta X v = \frac{\Delta P t \times S v}{K}$$

Sv: Servo valve's effective pressure area

From this formula the servo valve timer's absorbing of the effect of the driving reaction force on injection timing can be shown. As the effective pressure area directly acted upon by the pump chamber pressure decreases, and correspondingly the spring constant decreases, an improvement in response and hysteresis can be obtained.

3. Operation

3-1 When advance angle is "0" (Low pump chamber pressure)

-1

Fig. 3

compared to the timer spring force, is still low, and the servo valve and the timer piston are pushed fully in the retard direction by the timer spring. The passage between the pump chamber (high pressure side) and the timer's high pressure

The pump chamber pressure,

chamber is closed, and the timer's high pressure chamber is connected to the timer's low pressure chamber (fuel inlet side) by the servo valve.

		GEN	IERAL
		JUNE	1985
S.I.	155.	1985	4/9

3-2 When pump chamber pressure has increased.

Fig. 4

3-3 Stable condition (balanced)

The pump chamber pressure has increased, pump chamber pressure exceeds the spring force, and the servo valve has been moved to the right. The passage between the pump chamber and the timer's high pressure chamber is open. The pump chamber pressure acts on the timer's high pressure chamber. Due to this the timer

piston is moved in the advance (to the right) direction. Pump chamber pressure and timer

spring force are balanced, and the servo valve is stationary in a suitable position. The timer piston moves until the bush hole is closed by the servo valve. When the bush hole is completely closed, there will be no change in the timer's high pressure chamber pressure and the timer piston will be stationary.

		GEN	BRAL
_		JUNE	1985
S.I.	155.	1985	5/9

3-4 When pump chamber pressure has decreased

Fig. 6

From the balanced condition, pump chamber pressure has decreased and the servo valve is moved to the left by the timer spring force. The timer's high pressure chamber and the timer's low pressure chamber are connected through the passage in the servo valve. Therefore

the timer high pressure chamber's high pressure escapes to the timer's low pressure chamber and the timer piston moves in the retard (to the left) direction, and, as in 3-3 above, a balanced condition results.

3-5 Maximum advance position

Fig. 7

As the pump chamber pressure has completely overcome the timer spring force, the timer piston moves until its end face contacts the timer cover's low pressure chamber side. That is, if pump chamber pressure further increases, the timer piston cannot move further in the advance

direction. This position is the maximum advance position. According to the above, if the timer piston is moved through the driving reaction force, operations identical to 3-2 and 3-4 above will be repeated until the balanced condition 3-3 is attained.

		GEN	ERAL
		JUNE	1985
S.I.	155.	1985	6/9

4. Parts shape

The following shows the differences between servo valve timer and conventional type parts.

A10

	_	GEN	BRAL
		JUNE .	1985
S.I.	155.	1985	7/9

4-1 Pump housing

There is no change in the part number - only a change in the shape. Parts for new and conventional timers can be interchanged.

Fig. 9

Sections A and B have not been clad up to the present.

In the new housings, sections A and B (shaded area) are clad during die casting resulting in alterations to the fuel oil transfer passage which are described below.

In the future, all conventional housings will also be clad at sections A and B.

5. Alterations to the fuel oil transfer passage. During servo valve timer use, to make the entry of metal filings etc. into the pump chamber more difficult, the following modifications to the fuel oil transfer passage have been made.

Fig. 11

Servo valve timer - fuel oil passage explanation: () Feed pump discharge side reservoir \rightarrow () Feed pump ring hole \rightarrow () Faed pump ring hole \rightarrow () Faed pump cover \rightarrow () Feed pump cover's cut-away section \rightarrow () Roller holder's lower flat face \rightarrow () Timer chamber (and pump chamber) In this case, as fuel oil from the feed pump is not agitated, and is fed directly to the timer chamber, the entry of dust and metal filings etc. is minimized.

JUNE S.I. 155, 1985

Conventional timer - fuel oil passage explanation: (1) Feed pump discharge side reservoir → (2) Feed pump ring hole → (3) Feed pump cover hole → (4) Pump chamber → (5) Roller holder's outside groove → (8) Timer chamber. In this case, fuel oil containing metal filings etc. is agitated in the pump chamber, and is then fed to the timer chamber through the roller holders outside groove.

-		GEN	ERAL
		JUNE .	1985
S.I.	155.	1985	979

As mentioned in item 4 above, a fuel filter and spring have been added to the fuel inlet. This prevents the entry of dust etc. from the outside to the inside of the pump and when a load timer is used, also prevents agitated fuel oil in containing dust filings etc. in the pump chamber from again being fed to the timer chamber through the feed pump.

Service Information

GENERAL

VE PUMP BOOST COMPENSATOR COVER

A new boost compensator cover for the VE pump has been adopted in addition to the conventional type.

Therefore, there is a difference in the adjustment procedure for the boost compensator stroke. This is explained below.

Construction

Fig. 1 Conventional type

In the conventional type a stopper bolt, O-ring, washer and locknut are installed in the cover (shown in Fig. 1). However, these parts are replaced with an indentation in the new cover.

Boost Compensator Stroke Adjustment

In the conventional type, the stopper bolt must be adjusted so that the dimension between the tip of the stopper bolt and the inside face of the cover is approx. 0.5 mm. However, as the dimension from the tip of the indentation to the inside face of the cover is already 0.5 mm in the new cover, it is not necessary to adjust this dimension.

Other boost compensator adjustments do not differ from the conventional procedures.

ZEXEL

Service Dept.

A 1*4*

. . C. . .

 \odot

Service Information

CHANGES IN SEALING PROCEDURE FOR VE TYPE INJECTION PUMP

The sealing method for the VE type injection pump's full-load stopper bolt and maximum-speed stopper bolt has been changed from a wire seal to a cap seal. This change is explained below.

Injection Pump Seals

Sealing Caps

Fig. 1

Key Depth Part No. Shape Application No. (mm) 146598-0600 18 ٤ (9461612191) 146598-0700 21 (9461612192) For maximum-speed 836S 146598-0800 stopper bolt 24 a a a (9461612193) 146598-0900 27 (9461612194) 146598-1000 (9461612195) 36.5 For full-load stopper bolt 835S 17nm 146598-2700 24 For NISSAN LD20 (9461612281)

Bosch part number are shown in parentheses.

ZEXEL

GENERAL October, 1987 S.I. 194 2/7

Affected Parts

With the adoption of sealing caps, the shape of the maximum-speed stopper bolt, the locknut, and the governor cover has been changed.

	Current	New
Maximum-speed stopper bolt and locknut		Maximum-speed stopper boit
Governor cover (where full-load stopper bolt and locknut)		

Note

- 1. The sealing caps must never be reused after repairs or adjustment. Always use new ones,
- After installing the sealing caps, seal them using a lead seal and sealing wire.
- Injection pumps which have been adjusted by the engine manufacturers or Z E X E L have the following marks stamped on the end of the sealing caps.

Fig. 2 Stamping Mark Position

GENERAL October, 1987 S.I. 194 3/7

Date of Application

From April, 1987

GENERAL October, 1987 S.I. 194 4/7

Sealing Procedure

Fig. 3 Measuring the bolt protrusion

After completing injection pump adjustment, seal the injection pump according to the procedure described below.

Maximum-speed stopper bolt

- Measure the amount that the maximum-speed stopper bolt protrudes from the governor cover. (Fig. 3)
- 2. Select a suitable cap using the table below.

Bolt Protrusion L (mm)	Pat No.	Cap Depth £ (mm)
16 ~ 19	146598-0600	18
19 ~ 22	146598-0700	21
22 ~ 25	146598-0800	24
25 ~ 28	146598-0900	27

Thread the sealing wire through two adjacent holes in the sealing cap.

Note : If the wire is difficult to thread, bend the tabs in a

little.

(Fig. 5)

Fig. 4 Bolt protrusion and cap depth

Fig. 5 Inserting the wire

A18

Fig. 6 Installing the cap

Fig. 7 Installing the lead seal

Fig. 8 Sealing the cap

 Position the sealing cap on the locknut with the wire hanging down and then use a plastic mallet or a similar light tool to install the cap.

Note :

- 1. Do not reuse sealing caps. Always use new ones.
- 2. Check that the sealing cap tabs are hooked under the bolt head.
- 5. Fit the lead seal on the wire. (Fig. 7)

This is done to identify who was responsible for injection pump adjustment.

Note : Do not tie the wire.

- 6. Crush the lead seal using sealing pliers. (Fig. 8)
 - Note: Make the gap between the lead seal and the sealing cap as small as possible (to prevent the wire from breaking due to vibration) before crushing the lead seal.

GENERAL October, 1987 S.I. 194 6/7

- Niper
- 7. Cut off the excess wire using pincers. (Fig. 9)

Fig. 9 Cutting the wire

Full-load Stopper Bolt

1. Install the sealing cap on the governor cover boss with the two holes facing upward. (Fig. 10)

Fig. 10 Installing the cap

2. Thread the sealing wire through the two holes and position it so that it is slanting downward. (Fig. 11)

Fig. 11 Attaching the wire

GENERAL October, 1987 S.I. 194 7/7

3. Fit the lead seal firmly onto the wire. (Fig. 12)

Fig. 12 Installing the lead seal

4. Crush the lead seal using sealing pliers. (Fig. 13)

Fig. 13 Sealing the cap

5. Cut off the excess wire using pincers. (Fig. 14)

Fig. 14 Cutting the wire

- Service Information

CHANGES IN SEALING PROCEDURE FOR PE TYPE INJECTION PUMP

The sealing method for the PE type injection pump's full-load stopper bolt and maximum-speed stopper bolt has been changed from a wire seal to a cap seal. This change is explained below.

Sealing Caps

Part No.	Shape	Governor Type	Application
	32mm	RAD	Maxspeed stopper bolt (installed on cap nut)
154062-1700 (9421610922)		RFD	Maxspeed & full-load stopper bolt
(9421610922)		RLC	Maxspeed stopper brit
	Lester	RSV	Maxspeed stopper bolt
154062-1800	27mm	RFD	Maxspeed stopper bolt (PE-A base type pump only)
(9 421 510 923)		RSV	Maxspeed stopper bolt (PE-A base type pump only)
154062-1900 (9 421 610 925)	24mm	Rid	Full-load stopper bolt
154062-2000 (9 421 610 924)	30.5mm	RSV	Full-load stopper bolt (installed on cap nut)

Note : Bosch part numbers are shown in parentheses.

ZEXEL

Sealing Cap Positions

RAD Governor

- ① On full-load stopper
 - Sealing cap part No. : 154062-1700
 - Stopper bolt protrusion :
 L₁ = 27 ~ 36 mm
- On maximum-speed stopper
 - Sealing cap part No. : 154062-1700

RFD Governor

- ① On full-load stopper
 - Sealing cap part No. : 154062-1700
 - Stopper bolt protrusion : RFD-B, -C L₁ = 27 ~ 36 mm RFD-D L₁ = 29 ~ 36 mm
- On maximum-speed stopper
 - Sealing cap part No. :
 - 154062-1700 and
 - 154062-1800 *
 - *: (PE · A base type pump only)
 - Stopper bolt protrusion :
 - L2 = 25 ~ 34 mm
 - L2 = 20 ~ 26 mm*
 - *: (PE · A base type pump only)

Fig. 2 RFD Governor

.

PUMP

t.

RSV Governor

- ① On full-load stopper
 - Sealing cap part No. : 154062-2000
- On maximum-speed stopper
 - Sealing cap part No. : 154062-1700 and 154062-1800 *
 - *: (PE · A base type pump only)
 - Stopper bolt protrusion :
 - L2 = 25 ~ 34 mm
 - L2 = 20 · · 26 mm *
 - *: (PE · A base type pump only)

Fig. 3 RSV Governor

RLD Governor

- ① On full-load stopper
 - Sealing cap part No. : 154062-1900
 - Stopper bolt protrusion : L1 = 21 ~ 24 mm
- On maximum-speed stopper
 - Sealing cap part No. : 154062-1700
 - Stopper bolt protrusion : L2 = 29 ~ 36 mm

Fig. 4 RLD Governor

GENERAL October, 1987 <u>S.I. 195</u> 4/7

Note

- The sealing caps must never be reused after repairs or adjustment. Always use new ones.
- After installing the sealing caps, seal them using a lead seal and sealing wire.
- Injection pumps which have been adjusted by the engine manufacturers or Z E X E L have the following marks stamped on the end of the sealing caps.

Date of Application

٨

From February, 1987

Sealing Procedure

Fig. 6 Installing the sealing cap

Fig. 7 Bending the tabs

Fig. 8 Attaching the wire

After completing injection pump adjustment, seal the injection pump according to the procedure described below.

Following is an explanation of the sealing procedure for the RLD governor's maximum-speed stopper bolt.

 Position the sealing cap so that the slit faces upward and install it on the locknut using a plastic mallet or a similar light tool. (Fig. 6)

Note :

- 1. Do not reuse sealing caps. Always use new ones.
- 2. Check that the sealing cap tabs are hooked under the bolt head.
- Send the two bottom tabs in a little.
 (Fig. 7)
- Thread the wire through the two bottom holes, and position it so that is it slanting downward. (Fig. 8)

GENERAL October, 1987 S.I. 195 6/7

Fig. 9 Installing the lead seal

Fig. 10 Sealing the cap

Fig. 11 Fixing the wire

4. Twist the two ends of the wire around twice and then fit the lead seal on the wire. (Fig. 9)

 Ensure that the lead seal is not loose and then crush the lead seal using sealing pliers. (Fig. 10) This is done to identify who was responsible for injection pump adjustment.

- Wind the wire around to the top of the sealing cap and then twist the two ends around twice.
 - Note: Ensure that the wire is wound tightly around the sealing cap.

A 27

GENERAL October, 1987 S.I. 195 7/7

- 7. Cut off the excess wire using pincers. (Fig. 12)

Fig. 12 Cutting the wire

Service Information -

GENERAL

EXPLANATION OF DIESEL FUEL INJECTION EQUIPMENT PART NUMBERS

Z E X E L products' part numbers are indicated by ten figures, which are divided into six figures preceding a hyphen and four following.

The Assembly Numbers for fuel injection equipment are explained below.

1	0	•	•	•	<u>•</u>	—	<u>•</u>	•	•	<u>•</u>
(1,	2)	(3,	4)	(5)	(6)		(7)	(8,	9)	(10)

(1, 2) 10 : General assembly number for fuel injection equipment

(3, 4) Diesel fuel injection pumps and related products

- 10 : Part number of the PE(S)-A(D) type fuel injection pump Note : PE refers to in-line multi-plunger injection pump.
- 11~19 : General assembly numbers of the PE(S)·A(D) type fuel injection pump
 - 20 : Part number of the PE-B series fuel injection pump
- 21~29 : General assembly numbers of the PE-B series fuel injection pump
 - 30 : Part number of the PE-Z series fuel injection pump
- 31~39 : General assembly numbers of the PE-Z series fuel injection pump
 - 40 : Assembly number of the PF type injection pump Note : PF refers to Individual-type injection pump.
 - 41 : Assembly number of the PFR type injection pump (with tappet rollers) and the oversized PF type injection pump
 - 42 : Assembly number of the special PF type injection pump

ZEXEL

Service Dept.

B1

- 43 : General assembly number (or part number) of the PES-K type injection pump
- 45 : General assembly number of the VM distributor type injection pump
- 46 : Part number of the VE distributor type injection pump
- 47: General assembly number of the VE distributor type injection pump
- 48 : Part number of the COVEC type injection pump Note : COVEC means "Computed VE pump Control System".
- 49 : General assembly number of the COVEC type injection pump
- 50 : Nozzle part number or nozzle holder assembly number
- 51 : Nozzle and nozzle holder assembly number
- 52 : Assembly number of the fuel supply pump (or fuel filter)
- 53 : Assembly number of the R, RV, RQ and RQUV series mechanical governors
- 54 : Assembly number of the RSV, RAD and RFD series mechanical governors
- 55 : Assembly number of the MN and MZ type pneumatic governors, RBD type combined pneumatic-mechanical governor and the throttle valve
- 56 : Assembly number of the automatic timing devices and couplings
- 57 : Assembly number of the testing devices and special tools
- 58 : Assembly number of the hydraulic governors
- 59 : Assembly number of the RLD and RGD type mechanical governors and RED type electronic governor
- 60 : Part number of the PE(S)·P(D) type injection pump
- 61~69 : General assembly number of the PE(S)·P(D) type injection pump

1.5%

GEN	ERAL
JULY,	1988
S.I. 211	3/28

(5)~(7) See page 4 to 28

Ъ.

- (8, 9) Specific number (from 01 in design order)
 - (10) Modification code

5.00

Ē

Part number of the PE type injection pump

1	_0	1	_0	<u>•</u>	<u>•</u>	 •	•	•	•
(1,	2)	(3,	4)	(5)	(6)	(7)	(8,	9)	(10)

(5): Number of cylinders

- 1~6 : Same as digit
 - 7 : Spare
 - 8 : 8 cylinders
 - 9 : Special

(6) (3,4)	10 (PE·A)	20 (PE·B)	30 (PE·Z)	60 (PE·P(D))
1	5.0	6.0	10.0	Spare
2	5.5	6.5	11.0	7.0
3	6.0	7.0	12.0	8.0
4	6.5	7.5	13.0	9.0
5	7.0	8.0	13.5	10.0
6	7.5	9.0	14.0	11.0
7	8.0	10.0	15.0	12.0
8	8.5	11.0	16.0	13.0
9	9.0	12.0	-	(each dia. plus 0.5)
O	except 5~9	except 6~12		Spare

- (7): Camshaft installation mark position (viewed from injection pump cover plate or supply pump)
 - 0, 2, 4, 6, 8 : Right side 1, 3, 5, 7, 9 : Left side

5

Concession of the local division of the loca

General assembly number of the PE type injection pump

1	0	1	<u>6</u>			_	<u>•</u>	•		
(1,	2)	(3,	4)	(5)	(6)		(7)	(8,	9)	(10)

(4): Number of cylinders

(4) and (5) are the same as that given in assembly number explanation for PE type injection pumps.

(6) : Attachments

(6)	Supply pump	Governor	Timing device	
0	For	r special combination		
1			Equipped	
2	Equipped	Equipped	Not equipped	
3	Eduibbea		Equipped	
4		Not equipped	Not equipped	
5		Equipped	not odeippou	
6				
7	:	For spare		
8				
9				

Note : In the case of the PE·P(D) type injection pump.

- 0 : Not equipped with supply pump, governor or timing device
- 9 : For special combination

			S.I. 21	6/28								
facturer												
1 (PE·A)	2 (PE·B)	3 (PE·Z)	6 (PE-P(D))									
0, 4, 7, 8	_	-	1,6									
1,6	-	-	2,7									
2, 5	-	-	3, 8									
3	2		4,9									
9	0, 4	-	0, 5									
-	3											

GENERAL

9

9

9

4, 9

(7): Engine manufacturer

(7) Isuzu Mitsubishi Hino Komatsu Nissan D. Hitachi Daihatsu

Shinko

Niigata

etc.

Note : In the case of the PE-Z series injection pump, (7) to (9) is the specific number.

1

1

1

9

PF type injection pump assembly number

9

1	0	4			9	 9	•	٠	•
(1,	2)	(3,	4)	(5)	(6)	(7)	(8,	9)	(10)

(5): Injection pump type

0	:	Spare	5	:	PF1W type
1	:	PF1A type	6	:	PF1D type
2	:	PF1B type	7~9	:	Spare
3	:	PF1Z type			
4	:	PF1C type			

GENERAL JULY, 1988 S.I. 211 7/28

(6) (5)	1 (PF1A)	2 (PF1B)	3 (PF1Z)	4 (PF1C)	5 (PF1W)	6 (PF1D)
O	Except 5~9	-	-	-	-	-
1	5.0	6.0	10.0	10.0	15.0	18.0
2	5.5	6.5	11.0	11.0	16.0	19.0
3	6.0	7.0	12.0	12.0	17.0	20.0
4	6.5	7.5	13.0	13.0	18.0	21.0
5	7.0	8.0	13.5	14.0	19.0	22.0
6	7.5	9.0	14.0	15.0	20.0	-
7	8.0	10.0	15.0	16.0	21.0	-
8	8.5	-	16.0	-	22.0	-
9	9.0	-	-	-	23.0	-

(7): Configuration of mounting flange and control rack

0,	1,	2,	6,	7	:	Parallel
З,	4,	5			:	Perpendicular
8.	9				:	Special

(6): Plunger diameter (
 mm)

• Oversized PF type injection pump assembly number

1	0	4	1	•	<u>•</u>		•	•	<u>•</u>
(1,	2)	(3,	4)	(5)	(6)	(7)	(8,	9)	(10)

(5): Injection pump type

2	:	PF1BD type	6	:	F
3	:	PF1ZD type	7	:	F
4		PE1CD type	8		F

5 : PF1WM and

PF1K types

6 : PF1DD type

7 : PF1ED type

- B : PF1FD, PF1FX, PF1HD and PF1HX types
- 9 : PF1DD···C, Piel Stick, and MAN types

GENERAL JULY, 1988 S.I. 211 8/28

(5	(6)	0	1	2	3	4	5	6	7	8	9
2	PF1BD		11	12						<u> </u>	
3	PFIZD		15	16		1					
4	PFICD	16	17	18	19	20	21	22			12
5	PF1WM	20				24.5	14	17	18	23	25
Ľ	PF1K		18	20	21						
6	PF1DD		21	22	23	24	25	26	27	28	29
7	PF1ED	35	26	27	28	29	30	32	34	36	31
	PF1HD		40	42	40	40	50		44		
8	PF1FD		40	42	40	48	50	50			
L	PF1FX								53		
	PF1DD·C	-	30	31	32					28	29
9	Piel Stick	For					27	30	34		
	MAN	MAN									

(6): Plunger diameter (& mm)

(7): Configuration of mounting flange and control rack

0~2, 6, 7:	Parallel
3~5 :	Perpendicular
8,9 :	Special

PFR type injection pump assembly number

 $\frac{1}{(1, 2)} \quad \frac{4}{(3, 4)} \quad \stackrel{\bullet}{(5)} \quad \stackrel{\bullet}{(6)} \quad - \quad \stackrel{\bullet}{(7)} \quad \stackrel{\bullet}{(8, 9)} \quad \stackrel{\bullet}{(10)}$

(5): Injection pump type

- 0 : PFR·K(V) type
- 1 : PFR·A(V) type
- 2 : PFR·P type
- 3 : PFR·KX type
- 4 : PFR·CD type

7

(5) (6)	0	1	2	3	4	5	6	7	8	9
0 (PFR·K)	Except 4~8	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0
1 (PFR·A)	Except 5~9	5.0	5.5	6.0	6.5	7.0	7.5	8.0	8.5	9.0
2 (PFR·P)										12.0
3 (PFR·KX)				5.0	5.5	6.0	6.5	7.0	7.5	8.0
4 (PFR·CD)								18		20

(7): Number of cylinders Same as digit

PF special type injection pump assembly number

1	0	4	2	<u>•</u>	•	_	•	•	٠	•
(1,	2)	(3,	4)	(5)	(6)		(7)	(8,	9)	(10)

(5) : Injection pump type

- 0 : For pile-driver and PFR·MD type
- 1 : PF1GD and PF1GV types
- 2 : PF1ED--F type
- 3 : PF1Z type for Mitsubishi and PFR·RV type
- 4 : PF1C(D) type for Mitsubishi, PF1CX and PFR-CV types
- 5 : PF1W type for Mitsubishi, PF1WX, PF1WV and PF1WV-B types
- 6 : PF1GD type for Mitsubishi, PF1GX and PF1SV types
- 7 : PF1D(D) type for Mitsubishi, PF1DX, PF1DX...B and PF1TV types
- 8 : PF1ED type and PF1EX types
- 9 : PFR·KD type

				-	-			_			
(5	(6)	0	1	2	3	4	5	6	7	8	9
6	Pile-driver	For									
Ľ	PFR·MD	P.D.	3.0	3.5	4.0	4.5	5.0	5.5	6.0		
	PF1GD	20			-					1	
Ľ	PF1GV	26	21	22	23	24	25	26		1-	<u> </u>
2	PF1ED ····F	32	37	38	39	40	41	42	43	44	36
5	PF1Z		10	12	14	16		1			
Ľ	PFR·RV %	20	21	22	23	24	25	26			
	PF1C (D)		14	16	17	18	19			15	<u> </u>
4	PF1CX, RCV	16	17	18	19	20					
E	PF1W		20	21	22	23					
2	PF1WX, WV			16	17	18	19	20	21	22	
	PF1GD		21	22	23	24	25	26			
6	PF1GX	20	21	22	23	24	25	26	27		
	PF1SV					24	25	26	27	28	
	PF1D (D)		21	22	23	24, 25	26	27	28	29	
7	PF1DX	24	25	26	27	28	29	30	31	32	33
	PF1TV	26	27	28	290	30	31	32	33	34	
	PF1ED		28	30	32	33	34	36	38		
°	PF1EX	30, 31	32,33	34, 35	36, 37	38, 39	40, 41	42			
9	PFR·KD		4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	

(6): Plunger diameter (mm)

(7) - ①: Configuration of mounting flange and control rack (except PFR·KD and PFR·MD type pumps)

For "X "series

0~2, 6, 7: Parallel

- 3 : Perpendicular
- 4 : Parallel

5 : Perpendicular

8,9 : Special

- (7) ②: Number of cylinders (for PFR·KD and PFR·MD type pumps) Same as digit
- (7) 3: Pile-driver type
 - 0 : Type 12 1 : Type 22 2 : Type 40

B10

.

•	Part number o	of the Pl	ES·K ty	pe Inja	ction p	oump		
	<u>1 0</u> (1, 2)	<u>4 3</u> (3, 4	<u>e</u> 1) (5)	0 (6)		7) <u>(8</u> ,	9)	● (10)
	(5) : In	jection p	ump ty	be				
	0	: PES	S∙K type	1				
	(6): In	jection p	ump pa	irt numl	ber			
	0	: PES	S∙K type	ŀ				
	(7): N	umber o	f cylinde	ərs				
	1	: '	l cylind	er				
	0,	2, 5: 2	2 cylind	ers				
	3,	6 : 3	3 cylind	ers				
	4,	7:4	t cylind	ers				
•	General asser	nbly nur	nber ol	the P	ES·K ty	/pe inje	ection	pump
	1_0	4 3	<u>3</u> 0	•	- 9	•	•	•
	(1, 2)	(3, 4	4) (5)	(6)	(7) (8,	9)	(10)
	(5) : Inj	ection p	ump typ)e				
	0	: PES·K	type	,	4			
	(6): Nu	umber of	cylinde	ers				
	1	: 1 cy	linder					
	1	: 1 cy : 2 cy	linder linders					
	1 2 3	: 1 cy : 2 cy : 3 cy	linder linders linders					
	1 2 3 4	: 1 cy : 2 cy : 3 cy : 4 cy	linder linders linders linders					
	1 2 3 4 (7): Plu	: 1 cy : 2 cy : 3 cy : 4 cy ungerdia	linder linders linders linders ameter	(ф mm))			

(7)	0	1	2	3	4	5	6
Plunger dia.	5.0	5.5	6.0	6.5	7.0	7.5	6.5

ø

2. . 2.

General assembly number of the VM type injection pump

1	0	4	5	•	<u>•</u>	 •	•	•	•
(1,	2)	(3,	4)	(5)	(6)	(7)	(8,	9)	(10)

- (5): Number of cylinders and the direction of rotation (viewed from the pump's drive side)
 - 0 : 2 cylinders; Clockwise rotation
 - 1 : 2 cylinders; Counterclockwise rotation
 - 2 : 3 cylinders; Clockwise rotation
 - 3 : 3 cylinders; Counterclockwise rotation
 - 4 : 4 cylinders; Clockwise rotation
 - 5 : 4 cylinders; Counterclockwise rotation
 - 6 : 6 cylinders; Clockwise rotation
 - 7 : 6 cylinders; Counterclockwise rotation
 - 8 : Spare
 - 9 : Spare

(6): Plunger diameter (φ mm)

(6)	0	1	2	3	4	5	6	7
Plunger dia.	7.0	7.5	8.0	8.5	9.0	9.5	10.0	10.5

(7): Engine manufacturer

- 0 : Isuzu
- 1 : Nissan
- 2 : Mazda

÷

1	0	4	7	•	•	_	-	<u>•</u>	•	•	<u>e</u>
(1,	2)	(3,	4)	(5)	(6)			(7)	(8,	9)	(10)
(3, 4) :	46	~49	VE	type i	njecti	on p	un	р			
	46	: V	E type	e inje	ction	pum	p a	isse	mbly	numt	ber
	47	: V	Etype	e inje	ction	pum	pg	jene	ral as	seml	bly number
	48	: C	OVEC	C (Co	npute	d V	Εp	ump	Con	trol S	System) type injection
		p	ump a	assen	nbly n	umb	er				
	49	: C	OVEC	C type	injec	tion	pu	mp	gener	al as	sembly number
(5):	Nu	mber	of cy	linder	S						
	0	: S	pare			5	:	5 c	ylinde	ers	
	1	: s	pare			6	:	6 c	ylinde	ers	
	2	: 2	cyline	ders		7	:	Spa	are		
	3	: 3	cylind	ders		8	:	8 c	ylinde	ers	
	4	: 4	cylind	ders		9	:	Sp	are		
(6):	Plu	inger	diam	eter (þ mn	n)					
	0	: 10	0			5	:	Spa	are		
	1	: 1	1			6	:	Spa	are		
	2	: 1	2			7	:	Spa	are		
	3	: 1	3			8	:	8			
	4	: 14	4			9	:	9			
(7):	Eng	gine (manul	factur	er						
	0	: M	lazda			5	:	Spa	are		
	1	: Is	uzu			6	:	Spa	are		
	2	: N	issan	Moto	r	7	•	Spa	are		
	3	: M	litsubi	shi		8	:	Spa	are		
	4	: N	issan	Dies	el	9	:	Oth	ners		

in the second se

GENERAL JULY, 1988 S.I. 211 14/28

Nozzle part number

(5): Nozzle type

- 0 : DN type (pintle-type)
- 1 : DL type (hole-type)
- 2 : Special type
- (6): Nozzle size (or application)
 - ① For DN and DL type nozzles

(6)	0	1	3	4	5	6	7	9
Size	s	т	v	к	DLL·S	Special	Ρ	Nozzle & spacer ass'y

② For special type nozzles

- 0, 2, 3: For burner
- 1 : Spacer
- 4 : For Jet-loom
- 8 : Replacement nozzle

(7) : Nozzle classification

① For pintle-type nozzles

- 0 : Pintle-type
- 1 : Throttle-type

2 For hole-type nozzles

0~3,9 : Non-cooled nozzle

4~8 : Liquid-cooled nozzle

• Nozzie holder assembly number

18. 13

1	0		5	0	9	•	-		•	•	٠	•
(1,	2)		(3,	4)	(5)	(6)			(7)	(8,	9)	(10)
(5):	No	ozz	ie h	older	type							
	3	:	KB	, кв	L type		7	:	KC	A type	•	
	4	:	KB	A typ	ю		8	:	KD,	, KDL	type	
	5	:	KB	F typ	e		9	:	Spe	ecial t	уре	
	6	:	кс	; type	•							
(6):	No	ozz	le h	older	size							
	0	:	St	ype			5	:	Vty	/pe		
	1	:	SD) type	•		6	:	Wt	уре		

- 2 : T type 7 : (K) type 3 : TD type 8 : P type
- 4 : U type 9 : Spare

(7) (6)	P, S type	T type	U, V, W type		
0	Less than 30	Less than 50	Less than 100		
1	31~ 35	51~ 80	101 ~ 150		
2	51~70	81 ~ 100	151 ~ 200		
3	71~90	101 ~ 125	201 ~ 250		
4	91 ~ 110	126 ~ 150	251 ~ 300		
5	111 ~ 130	151 ~ 175	301 ~ 350		
6	131 ~ 150	176 ~ 200	351 ~ 400		
7	151 ~ 170	201 ~ 225	401 ~ 450		
8	171 ~ 190	226 ~ 250	451 ~ 500		
9	More than 191	More than 251	More than 501		

(7): Length of installed section (mm)

 Noz 	zie an	d no	zzie	holde	r ass	embly	y nu	mb	er					
	<u>1</u> (1,	0 2)	<u>5</u> (3,	<u>1</u> 4)	● (5)	• (6)	_	. !	• (7)	• (8,	• 9)	<u>●</u> (10)		
	(5):	N	ozzie	holde	r type									
		0 1 2 3	: H : H : H	(B(L)) (BA(L) ypes (BF ty	lype) and pe	KBE(L)	5 6 7 8 9	: : : :	KD(L Injec Spar Spar	.), K[tor e e	DA(L) and	KDE(L) typ	æs
	(6):	4 No	: H	(CA ty Size	pe			Э	•	Sher	an ty	pe		
		0 1 2 3 4	: 8 : 8 : T : T : L	type D typ type D type type	e		5 6 7 8 9	•••••••	V W (K) P Sp	type type) type type are				
	(7) :	No	ozzie 0: 1: 2: 3:	type Pintle Throi Throi DL ty	e-type ttle-ty itle-ty pe	e DN pe Df pe Df	VI (ir VI (ir	nclu	des	s Pinta s Pinta	aux i aux i	nozzle) nozzle)		

- 4 : DLL type
- 5: DLF type
- 6 : Spare
- 7 : DLL type (for two-spring nozzle holders)
- 8 : DN and DL(L) types (for nozzle holders with nozzletift sensor)
- 9 : Special type

.

GENERAL JULY, 1988 S.I. 211 17/28

		Ŭ	<u> </u>	2	<u>•</u>	<u>•</u>		<u>•</u>	•	•	<u>•</u>
	(1,	2)	(3	, 4)	(5)	(6)		(7)	(8,	9)	(10)
	(5) -	6	unnh		(or fi	itor) t					
	(3) .	۰ ۱	uppi)	Ktuno		iter) t	yhe				
		4	:	K type	sopp	ny pur	np				
			÷		e sup	ply p	ump				
		2	:	KS typ	e sup	ipiy pi	ump				
		3	:	KD typ	e sup	ply p	ump				
		4	:	Specia	l type	supp	ly pu	mp			
		5	:	Single-	stage	e filte)r				
		6	:	Two-st	age	filter					
		7	:	Specia	l type	filter					
		8	:	Specia	1						
(6) - (D:	S	upply	pump	size	and h	ousin	g mat	erial		
				Size			Hou	sing'	s mat	erial	
		0	:	A type			Cas	t iron			
		1	:	A type			Alur	ninun	n		
		2	:	B type			Cas	tiron			
		3	:	в туре			Alur	ninun	า		
		4		Z type			Cas	tiron	_		
		6	•	Etype			Alur	ninun tiron	1		
		7		Ptvne			Alur	ninum		naet i	
		8	: 1	Diaphra	iam t	vpe	Alur	ninum	, (O, ()		,
			:	supply	pump)			•		
		9	: :	Spare							
(6) - 🤅) :	Fu	el fil	ter cap	acity						
		0	: (0.5 liter		4	:)				
		1	: •	1.0 liter							
		2		1.1 liter		\$	}	· Spa	are		
		3		2 A liter		٩	.				

Assembly number of the fuel supply pump (or fuel filter)

6) - ③ : Special product's name

0 : Fuel cut valve

(7) - ① : Supply pump attachments

(6)	Priming pump	Filter			
0	Not equipped	Not equipped			
1	Equipped	not equipped			
2	Not equipped	Fauipped			
3		-debber			
4	Equipped	Not equipped			
5		Not equipped			

(7) - 2 : Filter element material

- 0 : Filter paper
- 1 : Silk cloth
- 2 : Felt
- 3 : Wire mesh
- 4 : Others
- 5 : Silk cloth and filter paper
- 6 : Silk cloth and felt
- 7~9 : Spare

• R, RV, RQ and RQUV series mechanical governors' assembly number

1	0		5	3		•	_	-	•	٠	•	٠
(1,	2)		(3,	4)	(5)	(6)			(7,	8,	9)	(10)
(5) :	G	ove	erno	r type	•							
	0	:	R	typ	е		5	:	RQ	UV t	ype	
	1	:	R	⊇V ty	ре		6	:	RQ	UVD	type	
	2	:	R(P) ty	pe		7	:	RP	Z typ	be .	
	3	:	R\	, RP	V typ	e	8	:	Spa	are		
	4	:	RC	QU ty	pe		9	:	Spa	are		
(6) :	Ą	opli	cabl	e inje	ction	pum	o sia	ze				
	0	:	A	ype	(RQ,	RQV))					
	1	:	AI	ype (with 1	orque	e co	ntr	ol de	vice))	
	2	:	Bt	ype (RQ, I	RQV,	R, f	RP,	, RV,	RPV)	
	3	:	Bt	ype (with t	orque	co	ntr	ol de	vice)		
	4	:	Zt	ype (RQU,	RQU	V, I	70	UVD	, RP)		
	5	:	Ζt	vpe (with t	orque	CO	ntre	ol de	vice)		

- 6 : P type
- 7 : P type (with torque control device and other devices)

(7, 8, 9): Specific number (from 001 in design order)

RSV, RAD and RFD series mechanical governors' assembly number

1	0	5	_4	•	•	 •	•	•	•
(1,	2)	(3,	4)	(5)	(6)	(7,	8,	9)	(10)

(5): Governor type and installation position(viewed from the injection pump cover plate)

		Туре	Position
0	:	RSV type	Right side
1	:	RSV type	Left side
2	:	RSVD type	Right side
3	:	RSVD type	Left side
4	÷	RSUV type	Right side
5	:	RSUV type	Left side
6	:	RAD type	Right side
7	:	RAD type	Left side
8	:	RFD type	Right side
9	:	RFD type	Left side

(6): Applicable injection pump size

- 0 : A type
- 1 : A type (with boost-compensator)
- 2 : A type (with torque control device or torque spring)
- 3 : B type
- 4 : B type (with torque control device or torque spring)
- 5 : Z type
- 6 : Z type (with torque control device or torque spring)
- 7 : P(D) type
- 8 : P(D) type (with torque control device or torque spring)

(7, 8, 9): Specific number (from 001 in design order)

.

 Pneumatic governor, RBD type combined pneumatic-mechanical governor and throttle valve assembly number

1_	0	5	5	2	•	_		•	٠	•
(1,	2)	(3,	4)	(5)	(6)		(7)	(8,	9)	(10)

(5): Type

- 0 : M type pneumatic governor
- 1 : MN type pneumatic governor
- 2 : MZ type pneumatic governor
- 3 : Spare
- 4 : RBD type combined pneumatic-mechanical governor
- 5 : Spare
- 6 : Standard type throttle valve
- 7 : Special type throttle valve
- 8 : Intake-air shutter
- 9 : Spare

(6) - ① Applicable injection pump size (for pneumatic governor)

- 0 : A type
- 2 : Spare (for MZ type governor)
- 9 : A type (for special type)

(6) $- \emptyset$ Applicable injection pump size (for RBD type combined governor)

- 0 : A type (with MN type governor)
- 1 : Spare
- 2 : A type (with MZ type governor)
- 3 : Spare
- (7): Diaphragm diameter (for pneumatic governor and combined governor)

3, 4, 6: \$\$ 60 mm, 8 : \$\$ 80 mm

(6, 7): Throttle valve diameter

timing

Automatic timing devices' and couplings' assembly number

1	0		5	6	<u>•</u>	•			۲	٠	•		
(1	, 2))	(3,	4)	(5)	(6)		(7)	(8,	9)	(10)		
(5)	: т	ype	•										
	0	:	M	anual	type	timin	g devi	ice					
	1	:	Ð	tema	l type	e timir	ng dev	rice (SA s	eries	; pin	type)	
	2	:	Bu	ıilt-in	type	timing	g devi	ce (S	CD s	eries	; pin	type)	
	3	:	Ð	tema	l type	timir	ng dev	rice (S	SP se	ries	; rolle	r type)	
	4	:	Bu	uilt-in	type	timing	j devi	ce (S	PZ se	eries	; rolle	er type)	
	5	:	Sp	are									
	6	:	Co	ouplin	gs								
	7, 8	:	Ec	cent	ic ca	n typ	e timii	ng de	vices				
	9	:	Ele	ectro	nic-hy	drauli	ic tim	ing d	evice	1			
(6)	-0	с	ams	haft (tiame	ter a	nd dir	ection	ofro	otatio	n (exc	ent FC tv	ne
• •	-	d	evice	2)							(0.10		pe
	(6)		Ca	imsh	aft di	a. (ф	mm)		C (Vic)irect	tion: of from	rotation drive sid	le)
	1				17					Cou	ntercio	ockwise	
	2				17						Clockv	vise	
	3				20					Cou	ntercio	ockwise	
	4				20						Clockv	vise	
	5				25					Cou	ntercio	ockwise	

(6) - ② Electronic-hydraulic timing device type and drive-shaft diameter (φ mm)

Clockwise

25

Special type

(6)	Timing device type	Drive-shaft dia. (¢ mm)
0	SAGH	20 "
1	SPGH	25
2	SAMH	20
3	SPMH	25

6

(1~5)	(6, 7)	Timing device type	Drive shaft dia. (\$ mm)	Direction of rotation	
10567	0-1 1 0-4	SCDM (standard type)	17	Clockwise	
10567	0-5 1 0-9	SCDM (standard type)	17	Counterclockwise	
10567	1-0 5 1-4	SCDM (standard type)	20	Clockwise	
10567	1-5 1 1-9	SCDM (standard type)	20	Counterclockwise	
10567	2-0 1 2-4	SAG (standard type)	20	Clockwise	
10567	2-5 1 2-9	SAG (standard type)	20	Counterclockwise	
10567	6-0 5 6-4	SCDM (gear installed on pump side)	20	Clockwise	
10567.	6-5 5 6-9	SCDM (gear installed on pump side)	20	Counterclockwise	
10568	0-0 \$ 0-4	SPG (standard type)	20	Clockwise	
10568	0-5 , 0-9	SPG (standard type)	20	Counterclockwise	
10568	1-0 i 1-4	SPG (standard type)	25	Clockwise	

(6, 7) : Timing device type, camshaft diameter and direction of rotation (for EC type timing device)

2

,

(1~5)	(6, 7)	Timing device type	Drive shaft dia. (φ mm)	Direction of rotation	
10568	1-5 1 1-9	SPG (standard type)	25	Counterclockwise	
10568	2-0 1 2-4	SDG (standard type)	25	Clockwise	
10568	2-5 	SDG (standard type)	25	Counterclockwise	
10568	7-0 5 7-4	SPM (special type)	25	Clockwise	
10568	7-5 \ 7-9	SPM (special type)	25	Counterclockwise	

(7)-① : Direction of rotation (for Electronic-hydraulic timing device)

0~4 : Clockwise rotation (viewed from the drive side)

5~9 : Counterclockwise rotation (viewed from the drive side)

(7)-② : Coupling type

- 0 : Laminated coupling
- 1 : Oldham's coupling (with Bakelite tip)
- 2 : Oldham's coupling (laminated Bakelite disk)
- 3 : Oldham's coupling (steel disk and nylon bushings)
- 4 : Special type (with timing device and air compressor)
- (7)~(9) : Specific number of the pin (or roller) type timing devices (from 001 in design order)

4 . . . 4

.

Testing device and special tools' assembly number

1_		5	_7	<u>•</u>		 •	•		
(1,	2)	(3,	4)	(5)	(6)	(7,	8,	9)	(10)

(5, 6) : Classification

- 50 : Smoke meter
- 60: Pump test stand model 5NP
- 61: Pump test stand model 7NP
- 62: Pump test stand model 15NP
- 65 : Attachments for pump test stand model 5NP
- 80 : Test nozzle or test nozzle holder
- 81 : Injection pump's fixing stand or driving stand
- 82: Measuring devices
- 83: Timing checker or stroboscope
- 84 : Attachments (couplings, heater, etc.)
- 85 : Nozzle tester
- 88 : Stroboscope
- 89: Nozzle cleaning tool
- 90: Special tool kit for disassembly and reassembly of the injection pump
- 92: Extractor

B25

- 94 : Universal vise ass'y
- 99: Special tools
- (7)~(9): Specific number (from 001 in design order)

Hydraulic governors' assembly number

1		<u>0</u>	5	88	•	•		•	•	•				
(1,		2)	(3,	4)	(5)	(6)		(7)	(8,	9)	(10)			
(5)	:	Ap	plicat	ke pu	mp si	ze or	Gove	mor t	ype					
	0		: For	PE·Z	, ZV a	ınd Z	WM ig	npe p	umps					
	1		: For	PE·P	type	pump)							
	2-	-4	: Spa	re (fo	or in-li	ine ty	pe p	umps)					
	5		: RHC)6 typ	e go	/emo	r							
	6		: RHC)10 a	nd Rł	HD35	type	gover	nors					
	7		: Elec	tro-h	ydrau	lic g	overn	101						
	8,	9	: Spa	re (fo	or ind	ividua	al-type	e pun	aps)					
(6)	:	Dir	ection	n of p	ump	rotatio	iv) ni	ewed	from	the p	oump's	drive	side)	and
		go	verno	r inst	allacio	n pos	sition	(view	ed fro	om ti	ne pum	p's c	over p	plate
		sid	E)											
	Fo	or in	-line	type	pumŗ	s								
	0		: Cioc	kwise	e rota	tion ;	right	side						
	1		: Cloc	* *	e rota	tion ;	left si	ide						
	2		: Cou	nterci	lockwi	ise ro	tation	ı; rigi	nt side	9				

3 : Counterclockwise rotation ; left side

For individual-type pumps

- 4 : Clockwise rotation
- 5 : Counterclockwise rotation
- 6 : Clockwise and counterclockwise reversible rotation

7~9 : Spare

(7): Attachments

- 3 : Lever control type (LC type)
- 4 : With pneumatic controller (FC type)
- 5 : With governor motor (MC type)
- 6 : W註 governor motor (MC type)
- 7 : With limit-switch-equipped governor motor (MCL type)
- 8 : With limit-switch-equipped governor motor (MCL type)
- 9 : With hydraulic controller (HC type) and others
- RLD and RGD type mechanical governors' and RED type electronic governor assembly number

1_	_0	5	9	<u>•</u>	<u>•</u>	 •	•	•	2
(1,	2)	(3,	4)	(5)	(6)	(7)	(8,	9)	(10)

- (5): Governor type
 - 0 : RGD type mechanical governor
 - RLD type mechanical governor (for PE-A type injection pump; installed on pump's right side)
 - RLD type mechanical governor (for PềA type injection pump; installed on pump's left side)
 - 4 : RLD type mechanical governor (for PE-P type injection pump)
 - 5 : RED type electronic governor
- (6) ① : RGD governor classification
 - 0 : Assembly 2 : General assembly
- (6) ② : Additional devices (For RLD type governor)
 - 0 : Not equipped
 - 1 : With torque cam
 - 2 : Spare
 - 3 : Spare

(6) - ③ : Applicable injection pump size (For RED governor)

0 : REDII type governor for PE-A pump

1 : REDII type governor for PE-P pump

2 : REDIL type governor for PE-P pump

- 3 : REDIt type governor for PE-A pump (installed on pump's right side)
- 4 : REDI type governor for PE-A pump (installed on pump's left side)
- 5 : REDI type governor for PE-ZW pump
- (7) ① : Engine manufacturer (for RGD governor)
 - 0,1 : Mazda 3 : Others
- (7)~(9): Specific number of RLD and RED type governors (from 001 in design order)

Service Information -

GENERAL MARCH, 1989 S.I. 218 1/1

GENERAL

MODIFICATION TO VE TYPE INJECTION PUMP FOR ISUZU 4JB1T ENGINE

The control shaft of the VE type injection nump (minimum-maximum speed specifications) for the 4JB1T engine has been modified. The modification is described below.

1. Modification

A snapring has been added to the control shaft (key no. 68).

	Current	New
Part No.	146513-6820*	Unchanged
Shape		Snapring

2. Applicable Pump Part Numbers 104741-6351* -6352*

3. Interchangeability

Only current control shafts can be replaced with new.

4. Date of Application

Injection pumps manufactured from September, 1988.

* Bosch Nr., see cross reference DKKC - Bosch, microfiche HB 30, HB 31.

ZEXEL

GENERAL JUNE, 1989 S.I. 224 1/2

Service Information -

GENERAL

VE Type Injection Pump Regulating Valve

A regulating valve with specially shaped control ports has been adopted on some VE type injection pumps utilizing timing devices with two-stage characteristics.

1. Purpose

- ① To comply with exhaust gas emission regulations and reduce vehicle acceleration noise.
- ② To reduce white smoke in the intermediate speed range.

2. Regulating valve shape

GENERAL JUNE, 1989 S.I. 224 2/2

3. Characteristics

Adjustment (supply pump pressure and timing device travel)
 As the timing device is the externally adjustable type, refer to the separate service Information bulletin (S.I. 223) for the adjustment procedure.

- 5. Applicable pump part numbers 104741-4073.* -4092*
 - * Bosch Nr., see cross reference DKKC Bosch, microfiche HB 30, HB 31.